A star is a star, right? Sure there are some
difference in terms of color when you look up at the night sky. But they are
all basically the same, big balls of gas burning up to billions of light years
away, right? Well, not exactly. In truth, stars are about as diverse as
anything else in our Universe, falling into one of many different
classifications based on its defining characteristics.
All in all, there are many different types of
stars, ranging from tiny brown dwarfs to red and blue supergiants. There are
even more bizarre kinds of stars, like neutron stars and Wolf-Rayet stars. And
as our exploration of the Universe continues, we continue to learn things about
stars that force us to expand on the way we think of them. Let’s take a look at
all the different types of stars there are.
Protostar:
A protostar is what you have before a star forms. A protostar is a collection of gas that has collapsed down from a giant molecular cloud. The protostar phase of stellar evolution lasts about 100,000 years. Over time, gravity and pressure increase, forcing the protostar to collapse down. All of the energy release by the protostar comes only from the heating caused by the gravitational energy – nuclear fusion reactions haven’t started yet.
T Tauri Star:
A T Tauri star is stage in a star’s formation and
evolution right before it becomes a main sequence star. This phase occurs at
the end of the protostar phase, when the gravitational pressure holding the
star together is the source of all its energy. T Tauri stars don’t have enough
pressure and temperature at their cores to generate nuclear fusion, but they do
resemble main sequence stars; they’re about the same temperature but brighter
because they’re a larger. T Tauri stars can have large areas of sunspot
coverage, and have intense X-ray flares and extremely powerful stellar winds.
Stars will remain in the T Tauri stage for about 100 million years.
Main Sequence Star:
The majority of all stars in our galaxy, and even
the Universe, are main sequence stars. Our Sun is a main sequence star, and so
are our nearest neighbors, Sirius and Alpha Centauri A. Main sequence stars can
vary in size, mass and brightness, but they’re all doing the same thing:
converting hydrogen into helium in their cores, releasing a tremendous amount
of energy.
A star in the main sequence is in a state of
hydrostatic equilibrium. Gravity is pulling the star inward, and the light
pressure from all the fusion reactions in the star are pushing outward. The
inward and outward forces balance one another out, and the star maintains a
spherical shape. Stars in the main sequence will have a size that depends on
their mass, which defines the amount of gravity pulling them inward.
The lower mass limit for a main sequence star is
about 0.08 times the mass of the Sun, or 80 times the mass of Jupiter. This is
the minimum amount of gravitational pressure you need to ignite fusion in the
core. Stars can theoretically grow to more than 100 times the mass of the Sun.
Red Giant Star:
When a star has consumed its stock of hydrogen in
its core, fusion stops and the star no longer generates an outward pressure to
counteract the inward pressure pulling it together. A shell of hydrogen around
the core ignites continuing the life of the star, but causes it to increase in
size dramatically. The aging star has become a red giant star, and can be 100
times larger than it was in its main sequence phase. When this hydrogen fuel is
used up, further shells of helium and even heavier elements can be consumed in
fusion reactions. The red giant phase of a star’s life will only last a few
hundred million years before it runs out of fuel completely and becomes a white
dwarf.
White Dwarf Star:
When a star has completely run out of hydrogen fuel
in its core and it lacks the mass to force higher elements into fusion
reaction, it becomes a white dwarf star. The outward light pressure from the
fusion reaction stops and the star collapses inward under its own gravity. A
white dwarf shines because it was a hot star once, but there’s no fusion
reactions happening any more. A white dwarf will just cool down until it
becomes the background temperature of the Universe. This process will take
hundreds of billions of years, so no white dwarfs have actually cooled down
that far yet.
Red Dwarf Star:
Red dwarf stars are the most common kind of stars
in the Universe. These are main sequence stars but they have such low mass that
they’re much cooler than stars like our Sun. They have another advantage. Red
dwarf stars are able to keep the hydrogen fuel mixing into their core, and so
they can conserve their fuel for much longer than other stars. Astronomers estimate
that some red dwarf stars will burn for up to 10 trillion years. The smallest
red dwarfs are 0.075 times the mass of the Sun, and they can have a mass of up
to half of the Sun.
Neutron Stars:
If a star has between 1.35 and 2.1 times the mass
of the Sun, it doesn’t form a white dwarf when it dies. Instead, the star dies
in a catastrophic supernova explosion, and the remaining core becomes a neutron
star. As its name implies, a neutron star is an exotic type of star that is
composed entirely of neutrons. This is because the intense gravity of the
neutron star crushes protons and electrons together to form neutrons. If stars
are even more massive, they will become black holes instead of neutron stars
after the supernova goes off.
Supergiant Stars:
The largest stars in the Universe are supergiant
stars. These are monsters with dozens of times the mass of the Sun. Unlike a
relatively stable star like the Sun, supergiants are consuming hydrogen fuel at
an enormous rate and will consume all the fuel in their cores within just a few
million years. Supergiant stars live fast and die young, detonating as
supernovae; completely disintegrating themselves in the process.
As you can see, stars come in many sizes, colors
and varieties. Knowing what accounts for this, and what their various life
stages look like, are all important when it comes to understanding our
Universe. It also helps when it comes to our ongoing efforts to explore our
local stellar neighborhood, not to mention in the hunt for extra-terrestrial life!
Comments
Post a Comment